

A new automated approach for the determination of peptides in human plasma using on-line SPE – LC – MS/MS

Martin Sibum, John Crutchfield, Emile Koster and Gerard Haak Spark Holland, Pieter de Keyserstraat 8, 7800AJ, Emmen, The Netherlands, Phone [+31] 591 631 700, E-mail: emile.koster@sparkholland.com, Website: www.sparkholland.com

Overview

- A new automated sample extraction technique for the determination of peptides through Mixed Mode Strong
- ▶ The new method is tested with 3 peptides with different molecular masses: 2100,5900 and 6200 amu.

Introduction

Sample preparation for analytes in biological matrices is a critical part of successful LC MS/MS analyses. Analysis of peptides is particularly challenging due to some unique properties such as size, carry-over, polarity differences and poor solubility, which can affect extraction performance. All these properties have a severe impact on the recovery of large peptides from biological matrices like plasma and serum. A new extraction approach for peptides is evaluated: integrated clean-up and analysis of peptides using an on-line SPE anion exchange procedure with a mixed mode strong anion exchange cartridge. Several peptides drugs from different suppliers were investigated with this procedure.

Experimental conditions

Samples were prepared by spiking pooled human plasma with a peptide. Prior to extraction, all plasma samples were diluted 1:4 with water. A diluted sample [100 uL] was directly placed into the autoasampler and analyzed fully automated. Online SPE is performed on a disposable cartridges: each sample uses a fresh SPE cartridge. After extraction, the peptides are eluted from the cartridge onto a reverse phase analytical column utilizing the HPD focusing mode.

Online -SPE-LC (Symbiosis™ Pico, Spark Holland)

LC		Gradient:			
Column: Mobile phase 1:	Phenomenex Jupiter 4µ Proteo 50x2 mm (p/n:00B-4396-B0) 0.1% Formic Acid in water	time (m:s)	flow (mL/min)	A %	B %
Mobile phase 2:	95% Methanol and 5% (0.1% Formic Acid in water)	00:01 03:00	0.4	100	0
SPE		03:02	0.5	100	100
Cartridge:	Oasis® MAX 30 µm 10x1 mm (Waters corporation)	04:40	0.5	0	100
Conditioning:	1 mL Methanol at 5 mL/min	05:00 06:00	0.5	100	0
Equilibration: Sample injection:	1 mL 20% Methanol in 1% NH40H water at 5 mL/min 100 uL spiked plasma				

Sample extraction: 500µL 20% Methanol in 1% NH40H water at 0.5 mL/min Cartridge wash 1: 1 ml 20% Methanol in 1% NH/OH water at 5 ml /mir Cartridge wash 2: 1 ml 80% Methanol in 1% NH/OH water at 5 ml /mir HPD Focus elution: 300 ul. Methanol at 100ul /min 1 mL 80/20 acetonitrile/water 0.2% FA at 5 mL/mi

ESI-MS (API4000, Applied Biosystems)

ESI-MS/MS conditions (positive mode)									
MS-settings									
Compound Mass	Q1 mass	Q3 mass	DP	CE	CXP				
2100	698.5	110.2	76	101	20				
5900	1184.3	454.6	51	57	14				
6200	1239.7	731.6	86	51	22				

15 5500 TEM (00 CAD 7 CUR 15 GC1 25 GC2 (0 ER 10 Dec)(1 15)

Results and Discussion

The sample clean-up is optimized by increasing the percentage organic modifier in the wash solvent. Figure 1 shows the wash optimization for the 6200 AMU peptide. The other two used peptides showed similar results.

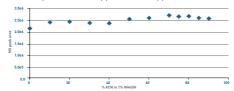


Figure 1: wash optimization for peptide 6200, peptide 5900 and 2100 showed same results

As shown in figure 1 the mixed mode anion exchange cartridge allows for a high organic wash without reducing the analyte recovery. For optimal clean-up a first wash step with 20% ACN was programmed to remove interfering proteins (no denaturing on SPE cartridge), followed by a second high organic wash at 80% ACN to remove non-polar matrix compounds (see chromatograms below).

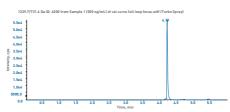


Figure 2: 6200 AMU peptide, Spiked plasma sample extracted on Oasis MAX (10X1 mm)

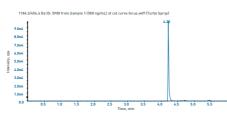


Figure 3: 5900 AMU peptide. Spiked plasma sample extracted on Oasis MAX (10X1 mm)

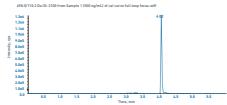


Figure 4: 2100 AMU peptide. Spiked plasma sample extracted on Oasis MAX (10x1 mm)

As shown in figure 2-4 clean and reproducible chromatograms were obtained. Subsequently, calibration curves were determined by injecting a full set of calibration standards ranging from 0.5 to 500 ng/mL spiked human plasma standards. The calibration curves are calculated with a 1/X weighting. The curves for the peptides 6200, 5900 and 2100 are displayed below (r > 0.996 for all three peptides).

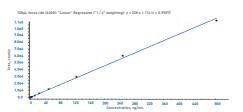


Figure 5: 4200 AMII pentide. Spiked plasma calibration curve from 0.5 to 500 pg/ml

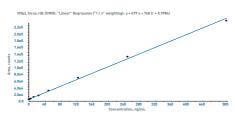


Figure 6: 5900 AMU pentide. Spiked plasma calibration curve from 0.5 to 500 ng/ml

Figure 7: 2100 AMU peptide. Spiked plasma calibration curve from 0.5 to 500 ng/mL

The method was evaluated using spiked human plasma samples. The developed XLC-MS/MS method has an absolute recovery of more than 90%. The accuracy is ranging from 89-117% and the precision 2.1-7.9 %CV. The estimated quantitation limits for the peptides are more than sufficient to allow the analytical method to be used for therapeutic drug monitoring.

Conclusion

- A simple sample preparation method was developed for the determination of three peptides in plasma
- In this concept 100 uL of a spiked plasma sample is loaded on a mixed mode anion exchange cartridge. ▶ The developed concept of automated on-line SPE – LC – MS/MS delivers clean and reproducible results.
- Good linearity was obtained for all 3 peptides in human plasma over the 0.5-500 ng/mL range (r > 0.996)
- ▶ More than 100 µL sample could be loaded onto the cartridge to achieve even lower detection limits.
- ► The Symbiosis™ Pico method is currently used routinely in several pharmaceutical labs (various companies) for analyzing different size of peptides (< 10K amu) with similar results.

