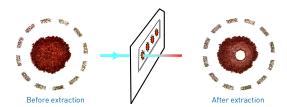


Investigation of a new concept for dried blood spot analysis without punching by means of online DBS-SPE-MS/MS

Lena Knegt, Bert Ooms and Emile Koster

Spark Holland, Pieter de Keyserstraat 8, P.O. box 388, 7800AJ, Emmen, The Netherlands, Phone (+31) 591 631 700, E-mail: emile.koster@sparkholland.com


Objective

Investigate feasibility of on-line extraction of Dried Blood Spots (DBS) for pharma bioanalysis using:

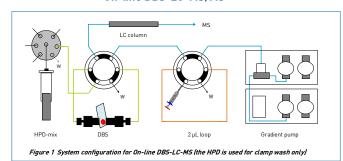
- On-line DBS-LC-MS/MS
- On-line DBS-SPE-MS

Experimental On-line DBS extraction instrument

An experimental device has been built to test the concept of on-line DBS extraction. A common DBS filter card is inserted into a specially designed clamping system (patent pending). A 2 mm circular area of the spot center is clamped witch sufficient force to seal the spot against at least 4000 Psi (-280 bar). For On-line DBS-LC-MS/MS, the extract is directly loaded onto the LC column by the LC-pump for gradient LC-MS/MS analysis (see fig 1). For On-line DBS-SPE-MS/MS, a High Pressure Dispenser (HPD) is used to direct the extraction solvent through the clamped spot area. The extract is trapped on an SPE cartridge for clean-up and then eluted directly into the MS by the gradient LC-pump (see fig 2)

Conclusion

- > A new DBS clamping device allows on-line (flow-through) dried blood spot desorption directly coupled to LC-MS/MS or SPE-MS/MS
- > On-line DBS-LC-MS showed serious matrix interference and does not seem suitable for reliable quantitative bio-analysis at adequate sensitivity
- > On-line DBS-SPE-MS/MS showed good linearity and precision for 4 model compounds with sensitivity down to sub-ng/mL level.
- > Matrix components are effectively flushed to waste before eluting the SPE trap to the MS/MS system.
- > A fresh SPE cartridge for every analysis eliminates built-up of matrix constituents from consecutive analyses
- > On-line DBS-SPE-MS/MS is a simple straightforward system capable of analyzing at least 20 samples per hour.


Experimental setup

ESI-MS/MS

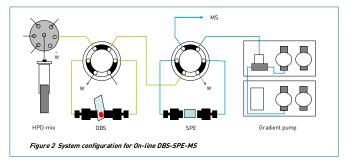
MS: API 4000 (ABSciex) in positive mode General settings: IS 5500; TEM 450; CAD 4; CUR 15; GS1 80; GS2 40; EP 10; Dwell 100

Compound specific MS-settings						
Compound	Q1 mass	Q3 mass	DP	CE	CXP	
Propranolol	260.1	116.1	31	25	8	
Haloperidol	376.1	165.2	6	35	12	
Amitriptyline	278.1	233.1	16	25	16	
Verapamil	455.3	165.2	66	37	8	

On-line DBS-LC-MS/MS

Experimental conditions

Filter card: Whatman FTA® DMPK-C Card


Sample matrix: . Human Blood (K3-EDTA) Desorption solvent: first 1 min of LC gradient
Clamp flush: 1 mL 80/20 ACN/water 0.2% FA at 5 mL/min
1 mL 5/95 ACN/water 0.2% FA at 5 mL/min

Mobile phase B:

Intersil ODS-3 column, 3 µm 4.6 x (GL Sciences Inc.) Acetonitrile 0.2% FA Water 0.2% FA

	(111.5)	(11112/111111)
	00:01	1.0
x 50 mm	01:00	1.0
	02:00	1.0
	03:00	1.0
	04:00	1.0
	04:30	1.0

On-line DBS-LC-MS/MS

Experimental conditions

Whatman Protein SaverTM 903® Card Filter card: Blood (Na2-EDTA) Sample matrix:

int: 1 mL water 0.2% FA at 2 mL/min (= sample transfer SPE) 1 mL 80/20 acetonitrile/water 0.2% FA at 5 mL/min 1 mL water 0.2% FA at 5 mL/min Clamp flush:

Cartridge Equilibration Cartridge wash:

HvSphere C18HD 10x2 mm 1 mL acetonitrile at 5 mL/min 1 mL water 0.2% FA at 5 mL/min 1 mL water 0.2% FA at 2 mL/min 1 mL 5/95 acetonitrile/water 0.2% FA at 5 ml /min 3 min gradient A) water 0.2% FA;

B) acetonitrile 0.2% FA

SPE	radient:		
time (m:s)	flow (m L/m in)	A %	ļ
00:01	1.0	95	5
00:05	1.0	95	5
01:35	1.0	60	4
01:45	1.0	60	4
02:00	1.0	95	5
03:00	1.0	95	5

Results

Figure 3 shows a typical chromatogram of an On-line DBS-LC-MS run. A throughput of about 12 samples per hour was obtained

On-line DBS-LC-MS/MS

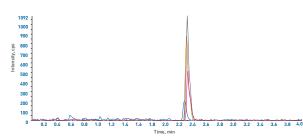
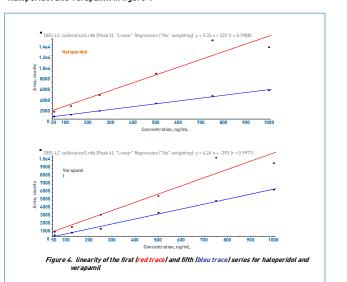



Figure 3 On-line DBS-LC-MS of Propranolol, Haloperidol, Amitriptyline and Verapamil

Linearity was investigated over the 50-1000 ng/mL range. After completion of the first calibration series, the sequence was repeated 4 more times because the first series showed a bad regression coefficient. Subsequent series show an improving coefficient of regression but much lower sensitivity as is shown for Haloperidol and Verapamil in figure 4

It was suspected that blood components are building up on the LC column or MS source, causing increasing levels of ionization-interfering compounds eluting from the column. In order to investigate this, 2 μL of neat analyte solution was manually injected 5 times immediately after the calibration series (using the 2 μL loop; see fig 1). The results (see figure 5) indicate that indeed matrix components had built-up and are gradually washed off the column under clean

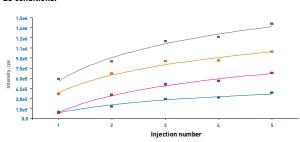
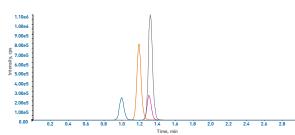



Figure 5. Signal from 5 subsequent injections of neat solutions of Propranolol, Haloperido Amitriptyline and Verapamil immediately after calibration series of blood sample:

It is clear from the above, that direct elution of blood extracts onto the LC column, without any clean-up, results in significant interference from matrix components, seriously hampering assay reliability and sensitivity.

Figure 6 shows a typical chromatogram of an On-line DBS-SPE-MS run. A throughput of at least 20 samples per hour was obtained.

On-line DBS-SPE-MS/MS

Linearity was measured over the 1-1000 ng/mL range. Good regression coefficients were obtained as shown in Table I show

Compound	regression coefficient (r)	
Propranolol	0.9991	
Haloperidol	0.9980	
Amitriptyline	0.9993	
Verapamil	0.9986	

Precision of the DBS-SPE-MS/MS method was measured at 3 different concentration levels. As shown in Table II, the RSD values obtained are well within common acceptance criteria. The LOQ was calculated to be below 1 ng/mL

Table II. Relative standard deviation (%) of DBS-SPE-MS/MS at low, medium at high concentration (n=9)					
Concent	ration level	Propranolol	Haloperidol	Amitriptyline	Verapamil
Low [1	0 ng/mL)	4.11	5.48	6.84	7.20
Medium	(400 ng/mL)	5.55	5.75	4.32	3.24
High (8	00 ng/mL)	5.38	4.44	5.09	6.12

Carry-over from a previously analyzed high concentration sample (1000 ng/mL) was determined after a generic high and low organic solvent wash step. As shown in figure 7 and by the data in Table III, only Haloperidol and Amitriptyline gave some measurable carry-over. Optimization of wash solvents will likely further reduce carry over.

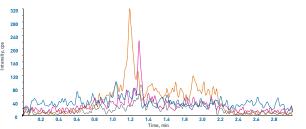


Figure 7: DBS-SPE-MS/MS chromatogram of blank blood analyzed directly after a 1000 ng/mL sample

Sample	Propranolol	Haloperidol	Amitriptyline	Verapamil
Spiked blood				
(1000 ng/mL)	9.11E+05	2.95E+06	9.78E+05	3.80E+06
Blank blood	< LOD	1.08E+03	5.17E+02	< LOD
Carry-over (%)	n.d	0.04	0.05	n.d

LOD = limit of detection defined as 2 times peak to peak noise; n.d. = not detected